Amperometric immunosensors based on layer-by-layer assembly of gold nanoparticles and methylene blue on thiourea modified glassy carbon electrode for determination of human chorionic gonadotrophin.

نویسندگان

  • Rong Chai
  • Ruo Yuan
  • Yaqin Chai
  • Chaofeng Ou
  • Shurui Cao
  • Xuelian Li
چکیده

Nano-Au and methylene blue (MB) were assembled layer-by-layer (LBL) into films on the glassy carbon electrode modified by thiourea for detection of human chorionic gonadotrophin (HCG). The electrode modification process was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron micrograph (SEM). The factors influencing the performance of the amperometric immunosensor were studied in detail. Tests performed with this immunosensor showed good linearity, the working range for the system was 1.0-100.0 mIU/mL with a detection limit of 0.3 mIU/mL at 3sigma. Moreover, the studied immunosensor exhibited high sensitivity and long-term stability. The present work supplied a promising test method for clinical immunoassay.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunoassay for Human Chorionic Gonadotropin Based on Glassy Carbon Electrode Modified with an Epitaxial Nanocomposite

      A highly sensitive electrochemicalimmunosensor was developed to detect hCG based on immobilization ofhCG-antibody (anti-hCG) onto robust nanocomposite containing Gr, Chit,1-methyl-3-octyl imidazolium tetra fluoro borate ionic liquid (IL)(Gr-IL-Chit). AuNPs were used to immobilize hCG antibody on the modifiedelectrode. The amine groups of the antibody are cova...

متن کامل

Electroanalytical sensing of Asulam based on nanocomposite modified glassy carbon electrode

In this study a facile approach to employ Copper nanoparticle (CuNPs) and multi-walled carbon nanotubes (MWCNT) as the nanomaterial for selective detection of asulam have been investigated. This work reports the electrocatalytic oxidation of asulam on glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNT), ionic liquids (IL), chitosan (Chit) and copper nanoparticles ...

متن کامل

Glucose Biosensor Based on Chitosan-Gold and Prussian Blue-Gold Nanoparticles

Amperometric glucose biosensors were constructed by codeposition of glucose oxidase (GOx) with chitosangold (chitosan-AuNP) on gold-Prussian Blue (Au-PB) nanoparticles modified glassy carbon electrodes (GCE). The high stability of the biosensors was achieved using electrochemically controllable in situ Au-PB film preparation following the film covering with GOx layer encrusted with chitosan-AuN...

متن کامل

Covalent Modification of Glassy Carbon Electrode with an Imidazolium based Methoxysilyl Ionic Liquid Nanoparticles: Application in Determination of Redox System

Glassy carbon (GC) is the most commonly used carbon-based electrode in the analytical laboratory. Because of the high background current and low electrode response, modification of this electrode can be done by various materials and techniques. An ionic liquid (IL), 1-methyl-3-(3-trimethoxysilyl propyl) imidazoliumbis (trifluoromethylsulfonyl) imide, was covalently cross linked onto the GC surf...

متن کامل

Electrochemical assay of anti-tetanus toxoid monoclonal antibody by silver enhancement of gold nanoparticles at carbon nanotubes modified glassy carbon electrode

Tetanus is caused by the toxin secreted by Clostridium tetani. Due to the rapid infection with this bacterium, it is so important to investigate the tetanus immunity of people. Therefore, electrochemical biosensors, as one of the most effective tools in this regard, have demanded characteristics such as being fast, simple, cost-effective and portable. However, their detection sensitivity is not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Talanta

دوره 74 5  شماره 

صفحات  -

تاریخ انتشار 2008